If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-2x=91
We move all terms to the left:
2x^2-2x-(91)=0
a = 2; b = -2; c = -91;
Δ = b2-4ac
Δ = -22-4·2·(-91)
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{183}}{2*2}=\frac{2-2\sqrt{183}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{183}}{2*2}=\frac{2+2\sqrt{183}}{4} $
| X²+3x-108=0 | | 20v+6(-5v+20)=-20v | | 2x*3x=50 | | 28=4(x+÷) | | 7w+4=16 | | 1.6y+y-4/15y+11/6y=7/3 | | -6.2q+11.31=-16.23-8.9q | | 6(m+5)=25 | | 4^3-r=8 | | 4^2x-5(2^2x-1)+1=0 | | 1/540-p=03/5p+ | | 2/3n+5=19 | | -10.3y+4.28=-10.7y | | 2(b-4)-6=6b-3 | | N=l(1-0.13)(1-0.03)(1-0.02) | | 30+a=3a-30 | | 14-(2q=5)=2q+9 | | 4y-3=13y+78 | | 14x=40-9x | | x^2=64/5 | | -4.65+13.9j=-0.3j+16.91+15.6j | | 4.4x-9.96=2.8 | | -4(d-8)=9d-12-3d-16 | | 5y+3(2y-12)=2y+18 | | 16.05-6.7n=-16.19-17.1n | | 19-n/7=12 | | (25-x^2)^1/2=0 | | -4(y-8)=12 | | (6b)(b=7) | | 5x-x=15 | | -3x–9=12 | | 9x+7x+5+2x+7+5x=9x+42+x+9 |